- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Chamberlin, Andrew J (1)
-
De_Leo, Giulio A (1)
-
Fringer, Oliver B (1)
-
Pauken, Brooke J (1)
-
Wood, Chelsea L (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Schistosomiasis, a debilitating parasitic disease of poverty affecting more than 250 million people worldwide, is contracted upon contact with the larval form of the parasite, known as cercaria, emerging from infected freshwater snails, the obligate intermediate host of the parasite. Understanding how infectious larvae can be transported in rivers and irrigation canals is crucial to fine-tune environmental interventions targeting the parasite and its intermediate host. Specifically, lateral cavities along many tropical rivers act as water access points but can also entrap parasitic larvae and provide low-velocity environments for snail-supporting vegetation to flourish, creating potential areas of high schistosomiasis infection. In this paper, the circulation of larvae in a typical transmission site along the Lampsar River in Senegal is modeled under a range of wind and vegetation conditions to better understand how such environmental factors affect their transport. We found that wind direction has a large influence on the distribution and abundance of parasitic larvae at the water access point, whereas increasing wind speed scales velocities but does not affect flow patterns. The area of coverage of vegetation can significantly alter flow magnitudes and circulation patterns for the same wind speed and direction. Increasing vegetation coverage generally leads to an increase in larvae residence time in the side pond, but the relationship is non-monotonic with five regimes of residence time behavior based on vegetation patch radius. The results suggest that there is an optimal patch radius at which larvae residence time and velocity deviations within the side pond are maximized.more » « lessFree, publicly-accessible full text available April 1, 2026
An official website of the United States government
